Post

Conway Look-and-say Sequence

Let’s play a game with integer sequences. Observe the following sequence:

\[\begin{align} 1\\ 11\\ 21\\ 1211\\ 111221\\ 312211\\ \vdots \end{align}\]

Can you tell the next number?

Ans: The next number is $1311221$ because we have “one $3$, one $1$, two $2$s, and two $1$s” from the previous term.


I came across this Conway look-and-say sequence in a minicourse about computational number theory and found the pattern was hilarious at first. After roughly going through the related section in Eureka. 46 and some basic theorems, I took some notes for fun.

Algebraic and transcendental numbers


Definition 0.1 (Algebraic Number) A number $\theta \in \mathbb{C}$ is algebraic if it satifies the polynomial equation, i.e.

\[f(\theta) = a_n\theta^n + a_{n-1}\theta^{n-1} + \cdots + a_1\theta + a_0 = 0\]

with $a_0, …, a_n \in \mathbb{Q}$.


From the definition, we notice that all rational numbers are algebriac as $x = \frac{a}{b}$ is a root of $bx-a$, where $a, b \in \mathbb{Z}$.

Some classic examples are:

  • $\sqrt{2} \rightarrow x^2 - 2$,
  • $i = \sqrt{-1} \rightarrow x^2 + 1$,
  • $\cos(\frac{2\pi}{9})\rightarrow 8x^3-6x+1$.

Proposition 0.2 The algebraic numbers form a field $\bar{\mathbb{Q}} \subseteq \mathbb{C}$.


  • Properties such as associativity, commutativity, and distributivity are inherited from $\mathbb{C}$. For $\bar{\mathbb{Q}}$ to be a field, all we need is to show is that the sum, difference, product and quotient (if the denominator is nonzero) of two algebraic numbers is again algebraic.
  • To prove the sum and product of two algebraic numbers is again algebraic, the following lemma turns out to be helpful.

Lemma 0.3 Suppose $V \subseteq \mathbb{C}$ is a finite-dimensional vector space over $\mathbb{Q}$ with $V \ne 0$ and $x \in \mathbb{C}$, then

\[xV \subseteq V \implies x \in \bar{\mathbb{Q}}.\]

Proof: Let $e_1, …, e_n$ be a basis for $V$. By assumption,

\[\begin{align} xe_1 &= a_{11}e_1 + \cdots + a_{1n}e_n, \\ xe_2 &= a_{21}e_1 + \cdots + a_{2n}e_n, \\ &\vdots\\ xe_n &= a_{n1}e_1 + \cdots + a_{nn}e_n. \\ \end{align}\]

Since a basis can’t be all zero vectors, we have

\[\det(xI - A) = 0,\]

where

\[A =\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots &\ddots & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}.\]

This is a polynomial equation with coefficients in $\mathbb{Q} \implies x \in \bar{\mathbb{Q}}$. ◼


Proof of proposition 0.2: Let $\theta_1, \theta_2$ be algebraic and, without loss of generality, $f_1, f_2$ be some rational polynomials with least degrees $m,n$ such that $f_1(\theta_1) = 0, f_2(\theta_2) = 0$. Clearly, $f(-\theta_1) = 0$ and $\theta_1^{m}f_1(\frac{1}{\theta_1}) = 0$. To show that $\theta_1+\theta_2$ and $\theta_1 \theta_2$ are algebaic, consider the following vector space

\[V = \langle \theta_1^i\theta_2^j : 0\leq i <m, 0 \leq j <n \rangle\]

over $\mathbb{Q}$ spanned by the $mn$ elements $\theta_1^i\theta_2^j$. Since $\theta_1^m$ can be expressed as a linear combination of lower degrees of $\theta_1$ (similarly for $\theta_2$), we have

\[\theta_1 V \subseteq V, ~~~ \theta_2 V \subseteq V.\]

Hence

\[(\theta_1 + \theta_2) V \subseteq V, ~~~ \theta_1\theta_2 V \subseteq V,\]

which completes the proof by the previous lemma. ◼

Remark: Similarly, we can show that the set of all algebraic integers forms a ring $\bar{\mathbb{Z}} \subseteq \bar{\mathbb{Q}}$.


The algebraic numbers form a countable subset of the $\mathbb{C}$, so “most” numbers are not algebraic. Non-algebraic numbers are called transcendental.

  • $\pi, \text{e}, \log(2), \text{e}^{\pi}$ are examples of transcendental numbers.

One of many useful results is the Lindemann’s Theorem.


Theorem 0.4 (Lindemann’s Theorem) Suppose $\theta \neq 0$ is algebraic. Then $\text{e}^{\theta}$ is transcendental.


Some remarks:

  • $\text{e}, \pi$ are transcendental immediately follows this theorem by setting $\theta = 1$ and $i\pi$.
  • I’ll prove a related result which implies Lindemann’s Theorem.

Theorem 0.5 Suppose $\theta_1, …, \theta_k$ are distinct algebraic integers. Then $\text{e}^{\theta_1}, …, \text{e}^{\theta_k}$ are linearly independent over $\bar{\mathbb{Q}}$.

Theorem 0.5 $\implies$ Theorem 0.4: Let $\theta$ be an algebraic number, then there exists an integer $k$ such that $\theta k$ is an algebriac interger (just multiply the corresponding polynomial equation by the appropriate integer). So, without loss of generality, suppose that $\theta$ is an algebraic integer and $\text{e}^{\theta} = b$ is an algebraic number. By setting $\theta_1 = 0$ and $\theta_2 = \theta$, $b_1 = -b$ and $b_2 = 1$, we have

\[b_1\text{e}^{\theta_1} + b_2 \text{e}^{\theta_2} = -b + \text{e}^{\theta} = 0,\]

contradicting the fact that $\text{e}^{\theta_1}$ and $\text{e}^{\theta_2}$ are linearly independent over $\bar{\mathbb{Q}}$. ◼

Proof of Lindemann’s Theorem: I just noticed that this proof required lots of technical details. I will try to write my version of proof in a later post, hopefully. See Jacobson’s book Algebra I, Page 277 for a complete proof. ◼


An algebraic suprise


The sequence $1, 11, 21, 1211, 111221, 312211, …$ is the Conway look-and-say sequence. Write $L_n$ for the length of the $n$th term. Then, surprisingly to me at least, the number

\[\lambda := \lim_{n \to \infty} \frac{L_{n+1}}{L_n} = 1.303577296...\]

is algebraic, satisfying a polynomial of degree $71$, which looks like this:

\[\begin{align} &x^{71}-x^{69}-2x^{68}-x^{67}+2x^{66}+2x^{65}+x^{64}-x^{63}-x^{62}-x^{61}-x^{60}\\ -&x^{59}+2x^{58}+5x^{57}+3x^{56}-2x^{55}10x^{54}-3x^{53}-2x^{52}+6x^{51}\\ +&6x^{50}+x^{49}+9x^{48}-3x^{47}-7x^{46}-8x^{45}-8x^{44}+10x^{43}+6x^{42}\\ +&8x^{41}-5x^{40}-12x^{39}+7x^{38}-7x^{37}+7x^{36}+x^{35}-3x^{34}+10x^{33}\\ +&x^{32}-6x^{31}-2x^{30}-10x^{29}-3x^{28}+2x^{27}+9x^{26}-3x^{25}+14x^{24}\\ -8&x^{23}-7x^{21}+9x^{20}+3x^{19}-4x^{18}-10x^{17}-7x^{16}+12x^{15}\\ +7&x^{14}+2x^{13}-12x^{12}-4x^{11}-2x^{10}+5x^{9}+x^7-7x^6+7x^5\\ -4&x^4+12x^3-6x^2+3x-6. \end{align}\]

The constant $\lambda$ can be interpreted as the ratio of two seccessive terms. It reveals the fact that the Conway look-and-say sequences grow predictably in size, and the length (i.e. number of digits) of the $(n+1)$ term is approximately $1.3057$ times the length of the $n$th term. Moreover, $\lambda$ is in fact the largest root of the above polynomial of degree $71$.

Properties of Conway look-and-say sequences

One can verify the following properties of the look-and-say sequences by using induction on the length of each term.

  1. Only $1, 2$ or $3$ appear in the digits.
  2. Every term in the sequences ends in $1$.
  3. Every term begin with $1$ or $3$, execpt for the third term $21$.
  4. The digits $22$ is stable, in the sence that it never changes.

$92$ Elements

Conway discovered that each term in the look-and-say sequences can be broken up into smaller, atomic ones, in the sence that each term in the look-and-say sequences is a concatenation of $92$ non-interacting subsequences. Conway named them after the $92$ elements in the periodic table from hydrogen $22$ to uranium $3$ with the longest atomic subsequence being rhenium: $111312211312113221133211322112211213322113$. To be more specific, let us summarise these $92$ atomic subsequences in lexicographical order in the table below.

NumberSubsequenceLengthEvolutionElement
111124(63) 
211121337(64)(62) 
311121332211212(65) 
411121332211312(66) 
511134(68) 
6111315(69) 
711131122211212(84)(55) 
81113126(70) 
9111312218(71) 
10111312211210(76) 
11111312211310(77) 
121113122113111214(82) 
1311131221131212(78) 
141113122113121114(79) 
1511131221131211321118(80) 
1611131221131211322113321132211221121332211242(81)(29)(91) 
1711131221131211322113321132211221121332211342(81)(29)(90) 
181113122113121132211332211226(81)(30) 
191113122113311214(75)(29)(92) 
20111312211332211311122113122128(75)(32) 
211113122122211214(72) 
2211131221222112112322211224(73) 
2311131221222112112322211324(74) 
24111325(83) 
2511132227(86) 
26111322211210(87) 
27111322211310(88) 
28111331128(89)(92) 
29122(1) 
301232221129(3) 
311232221139(4) 
321232221133122211311221123(2)(61)(29)(85) 
33132(5) 
341311126(28) 
351311222113321132211221121332211232(24)(33)(61)(29)(91) 
361311222113321132211221121332211332(24)(33)(61)(29)(90) 
37131221128(7) 
381323(8) 
39132115(9) 
401321126(10) 
41132112211210(21) 
4213211221121332211218(22) 
4313211221121332211318(23) 
441321136(11) 
45132113111210(19) 
46132113128(12) 
4713211327(13) 
48132113218(14) 
4913211321222112(15) 
501321132122211322211220(18) 
51132113212221132221222112112322211234(16) 
52132113212221132221222112112322211334(17) 
531321132221131211321120(20) 
54132113311210(6)(61)(29)(92) 
5513221127(26) 
5613221137(27) 
571322113311211(25)(29)(92) 
58132211331221113(25)(29)(67) 
5913221133122211311221121(25)(29)(85) 
601322113312221133217(25)(29)(68)(61)(29)(89) 
61222(61) 
6231(33) 
6331124(40) 
6431121127(41) 
653112112322211214(42) 
663112112322211314(43) 
6731122217(38)(39) 
6831134(44) 
693113116(48) 
70311311128(54) 
71311311221110(49) 
72311311221132211216(50) 
73311311221132211221121332211228(51) 
74311311221132211221121332211328(52) 
753113112229(47)(38) 
7631131122211212(47)(55) 
7731131122211312(47)(56) 
78311311222113111216(47)(57) 
7931131122211311122118(47)(58) 
8031131122211311122113122124(47)(59) 
813113112221131112211322223(47)(60) 
82311311222113311216(47)(33)(61)(29)(92) 
833113126(45) 
84311325(46) 
8531132211321222115(53) 
863113326(38)(29)(89) 
87311332211210(38)(30) 
88311332211310(38)(31) 
893123(34) 
9031221132221222112112322211327(36) 
9131221132221222112112322211227(35) 
92321125(37) 

Later when I feel productive…

This post is licensed under CC BY 4.0 by the author.